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Abstract
We show that any semi-direct sum L of Lie algebras with Levi factor S must
be perfect if the representation associated with it does not possess a copy of
the trivial representation. As a consequence, all invariant functions of L must
be Casimir operators. When S = sl(2, K), the number of invariants is given
for all possible dimensions of L. Replacing the traditional method of solving
the system of determining PDEs by the equivalent problem of solving a system
of total differential equations, the invariants are found for all dimensions of
the radical up to 5. An analysis of the results obtained is made, and this leads
to a theorem on invariants of Lie algebras depending only on the elements of
certain subalgebras.

PACS number: 02.20.Sv

1. Introduction

The subject of invariant functions of the coadjoint representation of Lie algebras has given
rise to many publications in recent scientific literature [1–5]. These are functions on the dual
space L∗ of the Lie algebra L that are invariant under the coadjoint action of the connected
Lie group G generated by L.

The invariants of physical symmetry groups provide the quantum numbers needed in the
classification of elementary particles. Thus, by making use of the eigenvalues of the Casimir
operators of the Poincaré group, Wigner achieved a classification of particles according to
their mass and spin [6]. One of the most significant applications of the invariant functions in
physics is in the theory of dynamical symmetries, in which the Hamiltonian is written in terms
of the Casimir operators of the corresponding Lie symmetry group and its subalgebras [7].

For semisimple Lie algebras, these functions are well known, following a paper by Racah
[8], which was mainly a continuation of a work by Casimir [9] and other physicists. For
this class of Lie algebras, there always exists a fundamental set of invariants that consists
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of homogeneous polynomials, and the degree of transcendence of the associative algebra
generated by these functions over the base field K of characteristic zero equals the dimension
of the Cartan subalgebra.

The Levi decomposition theorem gives a preliminary classification of Lie algebras into
semisimple and solvable ones, and a third class consisting of semi-direct sums of semisimple
and solvable Lie algebras. One fact that has emerged about these types of semi-direct sums of
Lie algebras is that all the invariants that have been computed for them in the recent literature
are polynomials [5, 10, 3]. In this paper, we consider a semi-direct sum of Lie algebras of
the form L = S ⊕π R, where S is semisimple and R is the solvable radical, and where π is
a representation of S in R defining the [S,R]-type commutation relations. Unless otherwise
stated, we shall refer to a Lie algebra of this form simply as a semi-direct sum of Lie algebras.
The base field K is assumed to be of characteristic zero. In section 3, we show that if π does
not possess a copy of the trivial representation, then L must be perfect, that is, equal to its
derived subalgebra. As a consequence of a result of [1], this implies that all invariants of L
must be polynomials. Other important consequences of this result are discussed. It is noted
in particular that all irreducible representations π satisfy the stated criteria.

In the next section, we move on to tackle the problem of the explicit determination of the
number of invariants of L with Levi factor S = sl(2, K) and π an irreducible representation.
Simple formulae giving this number are derived for all possible dimensions of R. In
section 5, we find it convenient to replace the most common method that consists in solving a
system of first-order PDEs for the determination of the invariants by the equivalent problem of
solving a system of total differential equations, as described in a book by Forsyth [11]. This
approach provides a more tractable algorithm. The invariants are computed for all dimensions
of the radical up to 5, and an analysis of the functions obtained is given. In particular, we show
that when dimR > 3, all invariants depend only on the elements of R. We show that this
property always hold, with a rank condition, for Lie algebras L which are direct sums L1 ⊕L2

of subspaces, and where L2 is an Abelian subalgebra. Some families of Lie algebras having
this property are exhibited.

The study of the invariants of Lie algebras reduces to the case of indecomposable ones.
We shall therefore assume, unless otherwise stated, that the Lie algebra L is indecomposable.

2. Invariant functions and Casimir operators

2.1. Formal invariants

Suppose that L is the finite-dimensional Lie algebra of the connected Lie group G, and denote
by L∗ the dual space of L. Let Ad: G → GL(L) and Ad∗: G → GL(L∗) be the adjoint and
the coadjoint representations of G, respectively. Thus for g ∈ G, f ∈ L∗ and x ∈ L we have
g · f (x) = f (Adg−1(x)), where g · f stands for Ad∗

g(f ). Denote by C∞(L∗) the space of all
analytic functions on L∗.

Definition 1. A function F ∈ C∞ is called an invariant of the coadjoint representation if
F(g · f ) = F(f ), for all g ∈ G and f ∈ L∗.

Let {e1, . . . , en} be a basis of L, and {f1, . . . , fn} the corresponding dual basis in L∗

given by fj (ei) = δ
j

i . Let Ṽ i be the infinitesimal generator of the coadjoint representation
associated with the basis vector ei of L, and suppose that x1, . . . , xn is a coordinate system in
L∗ corresponding to the dual basis. It is a well-known fact [12] that the infinitesimal generators
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are given by

Ṽ i = −
∑
j,k

ck
ij xk

∂

∂xj

for i = 1, . . . , n (2.1)

where the ck
ij are the structure constants of the n-dimensional Lie algebra L in the given basis.

These vector fields on L∗ form a Lie algebra that is homomorphic to L. We have more
precisely, [Vi, Vj ] = ∑

k ck
ijVk . On the other hand, by considering the infinitesimal action of

Ad∗ on L∗, it is easy to see [12] that a function F ∈ C∞(L∗) is an invariant of the coadjoint
representation if and only if it satisfies the system of partial differential equations

Ṽ i · F = 0 for i = 1, . . . , n. (2.2)

The most common method for finding the invariants [2, 1, 4, 5, 13] is by solving the system of
linear first-order partial differential equations given by (2.2). In contrast with the polynomial
functions in terms of which the invariants of semisimple Lie algebras can always be expressed,
the solutions to equation (2.2) generally involve various kinds of functions, including rational
and logarithmic functions, as well as functions in arctan. They are therefore usually referred to
as formal invariants of L. Because any functional relations among the invariants yield another
invariant, they are determined by a maximal set of functionally independent invariants. Such
a set is called a fundamental set of invariants. The number of invariants of L usually refers to
the cardinality of this set. It is a well-known fact [13, 4] that the number N of invariants of
the Lie algebra L is given by

N = dim L − rank(ML) (2.3)

where ML = (∑n
k=1 ck

ij xk

)
is the matrix of the commutator table of L.

2.2. Invariant polynomial functions

Let V be a finite-dimensional vector space. The symmetric algebra S(V ∗) is called the
algebra of polynomial functions on V, and is often denoted [14] by P(V ). When a fixed basis
{f1, . . . , fn} of V is given, P(V ) becomes identified with the algebra of polynomials in n
variables, f1, . . . , fn. Thus, the coadjoint representation Ad∗

g of the Lie group G acts naturally
on P(L), via (Ad∗

gf )(x) = f
(
Ad−1

g (x)
)
, for f ∈ P(L), and we see that the set denoted

by P(L)I of all elements of P(L) fixed by this action is precisely the algebra of polynomial
invariants of the coadjoint representation.

Let A(L) be the universal enveloping algebra of the Lie algebra L, and denote by A(L)I its
centre. That is, A(L)I is the subset of elements commuting with all x ∈ A(L), or equivalently,
with all x ∈ L. The elements of A(L)I are called Casimir operators, and they commute
with all elements of a representation. It follows by Schur’s lemma that in any irreducible
representation they are represented by scalars. Since any automorphism σ : L → L extends
uniquely to an automorphism of A(L), there is an action of Ad∗(G) on A(L), and this sends
A(L)I onto itself. It can be shown [14, 15] that A(L)I is precisely the set of all Ad∗(G)-
invariants of A(L). Finally, it can be proved [1, 15, 8] that the associative algebras P(L)I and
A(L)I are algebraically isomorphic. That is, there is a one-to-one correspondence between
the polynomial invariants of the coadjoint representation and Casimir operators. When L is
semisimple, the space of all invariants of the coadjoint representation is precisely P(L)I . In
this case, all invariant functions of the coadjoint representation are polynomials, and hence
Casimir operators. In the next section, we show that this is also true for any nontrivial semi-
direct sum L = S ⊕π R of Lie algebras, when the representation π does not possess a copy
of the trivial representation.
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3. Properties of the invariant functions

Suppose that the finite-dimensional Lie algebra L over the field K of characteristic zero is a
semi-direct sum of the semisimple Lie algebra S and the solvable ideal R. That is, we have
the vector space direct sum

L = S
.
+ R (3.1)

where [S, S] = S, [R,R] ⊂ R and [S,R] ⊂ R. Furthermore, we shall always assume that
this semi-direct sum is nontrivial, which means that [S,R] �= 0 (otherwise L is decomposable).
The given of the Lie algebra L is equivalent to the given of the semisimple Lie algebra S,
the solvable algebra R, and a representation π of S in R, which defines the [S,R]-type
commutation relations. Furthermore, π(z) must be a derivation of R for each z ∈ S. Indeed,
the Jacobi identity applied to z ∈ S and u, v ∈ R leads to

π(z) · [u, v] = [π(z) · u, v] + [u, π(z) · v] (3.2)

and justifies this assertion. Using equation (3.2) and the solvability of R, it is easy to see that
for any irreducible representation of S in R, the radical R must be Abelian.

Let RS = {v ∈ R: π(S)v = 0}. In [15], an element of the subspace RS is called an
invariant of the S-module R. Denote also by π(S)R the subspace of R generated by all
π(s)R, where s ∈ S. Because S is semisimple, R is the direct sum of RS and π(S)R.

Lemma 1. Let L = S ⊕π R be a nontrivial semi-direct sum of the semisimple Lie algebra S
and the solvable Lie algebra R, and suppose that the representation π defines the [S,R]-type
commutation relations.

(a) If π does not possess a copy of the trivial representation, then L is perfect, and it has
therefore a fundamental set of invariants consisting of polynomials.

(b) The representation π does not possess a copy of the trivial representation if and only if
π(S)R = R.

Proof. We first notice that we have in this case π(S)R = [S,R]. Now, for part (a), we
see that π does not possess a copy of the trivial representation if and only if RS = 0. It
then follows from the remark preceding the lemma that [S,R] = R, whence the equality
[L,L] = L. The remaining part of the assertion is a consequence of a result of [1, corollary 2]
asserting precisely that any perfect Lie algebra has a fundamental set of invariants consisting
of polynomial functions.

For part (b), the result is a consequence of the fact that π does not possess a copy of the
trivial representation if and only if RS = 0, and the equality R = π(S)R ⊕ RS . �

Theorem 1. Let L = S ⊕π R, with the usual notation, and suppose that the representation
π is irreducible. Then L is a perfect Lie algebra, and has therefore a fundamental set of
invariants that consists of polynomial functions.

Proof. By part (a) of lemma 1, we only need to show that if π is irreducible, then it does
not have a copy of the trivial representation. If π is irreducible, then since the semi-direct
sum is nontrivial, the image space of a generic element π(z) of the representation is clearly
a nonzero invariant subspace, and its complementary subspace W is the largest subspace on
which π acts trivially. By irreducibility W = 0, and thus π does not possess a copy of the
trivial representation. �
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Remark

(1) Not all semi-direct sums of Lie algebras are perfect. One such example is given by the
‘optical Lie algebra’ opt(2, 1) [16]. It is a seven-dimensional subalgebra of the de Sitter
algebra o(3, 2) and has the form L = S ⊕π R, where S is generated by {k1, k2, l3} , the
radical R is generated by {w,m, q, c} and the commutation relations are given by

[w,m] = −[k1,m] = 1
2m [k2, q] = [l3,m] = 1

2m [w, q] = 1
2q

[k1, q] = [k2,m] = 1
2q [w, c] = −[m, q] = c −[l3,m] = 1

2q

[k1, k2] = −l3 [k1, l3] = −k2 [k2, l3] = k1.

A simpler example is given by any Lie algebra of the form L = S ⊕π R, where the
radical R is Abelian and RS �= 0.

(2) For a Lie algebra of the form L = S ⊕π R, the condition that π does not possess a
copy of the trivial representation (or equivalently, that [S,R] = R) is only a sufficient
condition, but not a necessary condition, for L to be perfect. For example, the derived
subalgebra of opt(2, 1) has c as a central element, and π has therefore a copy of the trivial
representation. However, this subalgebra is perfect.

(3) Lemma 1 gives an interpretation of the sufficient condition [S,R] = R for L to be perfect
in terms of the representation π defining the [S,R]-type commutation relations.

By the already cited result of Racah [8], any semisimple Lie algebra has a fundamental
set of invariants consisting of polynomials. This result together with the Levi decomposition
theorem and lemma 1 shows that there are only two types of Lie algebras that might not have
a fundamental set consisting of polynomial invariants. The first type consists of semi-direct
sums of Lie algebras of the form L = S ⊕π R, where the representation π possesses a copy
of the trivial representation (and is therefore not irreducible). The second type consists of
solvable non-nilpotent Lie algebras. Indeed by a result of [17], the invariants of nilpotent
Lie algebras can all be chosen to be polynomials. However, invariants in a fundamental
set for solvable non-nilpotent Lie algebras generally involve rational, logarithmic and other
types of functions [4, 18, 10]. Although some non-nilpotent solvable Lie algebras having a
fundamental set consisting of polynomials are given in [2], no characterization of such Lie
algebras is available.

For semi-direct sums of Lie algebras, there is still no general result concerning the number
of their invariants, contrary to the case of semisimple Lie algebras for which this number is
known to be equal to the rank of the algebra [8, 14]. We derive this number for a particular
Levi factor S in the next section.

4. The number of invariants of L

In this section we suppose that S = sl(2, K) has the standard basis x, y, h in which the
commutation relations are given by

[h, x] = 2x [h, y] = −2y [x, y] = h. (4.1)

The following result is an immediate consequence of theorem 7.2 of [14] and theorem 13.11
of [19].

Theorem 2. Let S = sl(2, K), where K is a field of characteristic zero.

(a) For any m ∈ Z
+, there exists a unique (up to isomorphism) irreducible S-module of

highest weight m.
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(b) For each value m ∈ Z
+ of the highest weight, there exists a basis {v0, . . . , vm} of the

S-irreducible module V = V (m) in which the action of S is given by

(b.1) h · vi = (m − 2i)vi;
(b.2) y · vi = (i + 1)vi+1;
(b.3) x · vi = (m − i + 1)vi−1

where i � 0, v0 is the maximal vector, and where v−1 = vm+1 = 0 and vi = (1/i!)yi · v0.

We shall also need the following result.

Lemma 2. Let M = (
A B
C 0

)
be a matrix partitioned into four blocks of matrices A,B,C and

0, where 0 represents the zero matrix.

(a) If A is a non-singular square matrix of order k, then M has rank k if and only if
CA−1B = 0.

(b) If M is a non-singular square matrix of order 2p so that each of the block matrices is a
square matrix of order p, then M−1 has the form M−1 = (0 Y

Z W

)
, where Y,Z and W are

square matrices of order p.

Proof. Part (a) is an immediate consequence of a theorem from a book by Gantmacher
[20, p 47]. For part (b), we note that M−1 = (

X Y
Z W

)
implies ZB = I and XB = 0, where I is

the identity matrix. Thus, B is invertible and hence X = 0. �

We now assume that, with the usual notation, L = S ⊕π R has finite dimension n, and
that dimR = d. Thus, L has dimension n = d + 3. We note that d may assume any positive
value, by part (a) of theorem 2.

Theorem 3. Let L = S ⊕π R, and set r = rank(ML), where ML is the matrix of the
commutator table of L. Then

(a) r = 2, for d = 1.
(b) r = 4, for d = 2, 3.
(c) r = 6, for d � 4.

Proof. For part (a), we note that when d = 1, S acts trivially on the one-dimensional module
R, and thus rank(ML) = rank(MS), where MS is the matrix of the commutator table of S.
It also follows from equation (4.1) that MS can be put in the form

MS =
(

A B

C 0

)
with A =

(
0 h

−h 0

)

and for some block matrices B and C, we have CA−1B = 0. The result then follows from
part (a) of lemma 2.

For part (b), one can always write ML in the form

ML =
(

A4 B

C 0

)
for d = 2, 3

where A4 is a square non-singular matrix of order 4, and we have CA−1
4 B = 0. Thus, the

result follows again from part (a) of lemma 2.
Finally, we note that

ML =
(

M6 E

F 0

)
for d � 4
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where M6 is a square matrix of order 6, of the form
(
A B
C 0

)
and where A,B and C are 3 × 3

block matrices. Denoting by m = d − 1 the highest weight of the representation, we find that
M6 has determinant

−(
(−2 + m)v1

(
(−1 + m)v2

1 − 3mv0v2
)

+ 3m2v2
0v3

)2

and this is different from 0 since it has 9m4v4
0v

2
3 as a term. Thus, M−1

6 has the form

M−1
6 = (03×3 Y

Z W

)
, by part (b) of lemma 2. Noting now that the submatrices E and F have

their last three rows and last three columns consisting of zeros, respectively, it follows that
M−1

6 E = 0. By part (a) of lemma 2 again, we see that rank(ML) = rank(M6) = 6. �

Theorem 4. Suppose that the radical R has dimension d. Then the number N of invariants
of L = S ⊕πR is given by

(a) N = 2, for d = 1.
(b) N = 1, 2, for d = 2, 3, respectively.
(c) N = d − 3, for d � 4.

Proof. It is a direct consequence of equation (2.3) and theorem 3. �

5. Explicit determination

5.1. The method of total differential equations

The invariants are usually determined by solving the system of determining equations (2.2).
This is a system of homogeneous linear first-order partial differential equations, and the method
of characteristic is the most common for solving them. These equations are suitable for the
determination of the invariants when the number of variables they involve is relatively low.
They are widely used for the determination of the invariants [2, 4, 1, 5].

However, when the number of variables involved in the invariants becomes relatively high,
the equivalent adjoint system of total differential equations becomes more appropriate for the
determination of the invariants. It provides a more efficient algorithm involving a smaller
number of change of variables and substitutions. In particular, the number of equations in the
system corresponds to the number of invariants. Thus, only one total differential equation is
to be solved when there is only one invariant, no matter what the initial number of equations
in (2.2). We now derive the relationship between a system of integral equations and the
corresponding adjoint system of total differential equations (see [11] for more details).

Let

φj (u1, . . . , up, x1, . . . , xq) = cj (5.1)

be a system of p integral equations in p + q variables, where p and q are positive integers.
Furthermore, assume that the functions φj are functionally independent, for j = 1, . . . , p.
Then, without loss of generality, this amounts to assuming that

∂(φ1, . . . , φp)

∂(u1, . . . , up)
�= 0. (5.2)

Taking the differential in (5.1) yields
∑

s

∂φ

∂us

dus +
∑

t

∂φ

∂xt

dxt = 0. (5.3)

By the implicit function theorem, condition (5.2) implies that one can solve the system
(5.1) for the variables uj (j = 1, . . . , p) in terms of the remaining q variables. Thus, we call
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the variables uj the dependent variables, and the remaining q variables are the independent
variables of (5.1). In particular, (5.2) implies that one can uniquely solve for the differentials
dus in terms of the dxt in (5.3). This yields the following system of total differential equations:

dus =
q∑

t=1

Us,t dxt for s = 1, . . . , p. (5.4)

The substitution of (5.4) into the left-hand side of (5.3) gives rise to a linear function of
dx1, . . . , dxq . Because the variables x1, . . . , xq are independent, there cannot be any functional
relation among them. Thus, the coefficients of the linear function in dx1, . . . , dxq must all
vanish. This leads to the following system of q linear first-order partial differential equations,
called the Jacobian system of (5.1):

�tφ ≡ ∂φ

∂xt

+
p∑

s=1

Us,t

∂φ

∂us

= 0 for t = 1, . . . , q. (5.5)

It is easy to see [11] that the two equations (5.5) and (5.4) have exactly the same integrals,
and that a function � is a solution of (5.4) or (5.5) if and only if it is a function of φ1, . . . , φp.
It is also clear that both equations (5.4) and (5.5) have exactly p functionally independent
solutions. Equation (5.4) is called the adjoint system of (5.5). Conversely, any equation of
the form (5.5) satisfies the conditions of integrability if and only if the commutators of the
differential operators �t (for t = 1, . . . , q) all vanish [11, 21].

5.2. Applications

Suppose that the n-dimensional Lie algebra L is generated by {X1, . . . , Xn} and that
{x1, . . . , xn} is a coordinate system associated with this basis. We notice that under the
identification of the symmetric space S(L∗) with S(L), the coordinates system in a given
basis of L∗ may be replaced by the coordinates system in the corresponding dual basis in L.
Furthermore, it is customary to use the same notation for basis vectors and corresponding
coordinates systems in the expression of the invariants.

By (2.2), the determining equations X̃i · F = 0, for i = 1, . . . n, are given by the system
of homogeneous linear first-order PDEs∑

j

[xi, xj ] · ∂F

∂xj

= 0 i = 1, . . . , n (5.6)

where we have set [xi, xj ] = ∑
k ck

ij xk . Let q = rank(ML) = rank([xi, xj ]). Then we can

solve (5.6) for q of the variables ∂F
∂xj

. This yields an equation of the form

∂F

∂xt

= −
n∑

s=q+1

Us,t

∂F

∂xs

t = 1, . . . , q. (5.7)

This equation represents the Jacobian system for the integral equations of (5.6). Indeed, by
equation (2.3), equation (5.6) possesses exactly n − q functionally independent invariants. It
also determines the coefficients Us,t of the corresponding adjoint system, and thus the adjoint
system itself, which is given by

dus =
q∑

t=1

Us,t dxt for s = 1, . . . , n − q and us = xq+s . (5.8)

Consequently, the determining equations given by (5.6) and which represent a system of linear
first-order PDEs are equivalent to (5.8). Therefore, the latter system can be used for the
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Table 1. Invariants of the semi-direct sum L = S ⊕π R(m).

Dimension of R(m) Algebra Invariants

1 sl(2, F ) ⊕ 〈v0〉 I1 = 4xy + h2

I2 = v0

2 sl(2, F ) ⊕π R(1) I1 = v2
1x + v0v1h − v2

0y

3 sl(2, F ) ⊕π R(2) I1 = hv1 + 2v2x − 2v0y

I2 = v2
1 − 4v0v2

4 sl(2, F ) ⊕π R(3) I1 = 2v0v
3
2 − 9v0v1v2v3 +

27
2 v2

0v2
3 + 1

2 v2
1v2

2 + 2v3
1v3

5 sl(2, F ) ⊕π R(4) I1 = −12v0v4 + 3v1v3 − v2
2

I2 = 27v0v
2
3 − 9v1v2v3 + 27v2

1v4 −
72v0v2v4 + 2v3

2

determination of the invariants. As already noted, this system involves in many instances,
and in particular when the number of variables in the equations is relatively high, a more
systematic algorithm than that needed for solving the system of PDEs (5.6) directly.

5.3. Examples

The method consisting of solving the system (5.8) rather than the equivalent system of
PDEs (5.6) has been used in [10] for the determination of the invariants. Namely, the
invariants of certain solvable Lie algebras of dimension 6, and those of the Lie algebra
sa(n, R) (for n = 2, 3, 4), where sa(n, R) is the semi-direct sum of sl(n, R) and the Abelian
Lie algebra of dimension n. We apply the same method here for the Lie algebra L = S ⊕πR,

where as in section 3 this notation represents the semi-direct sum of S = sl(2, K), and
the radical R, and where the commutation relations of the [S,R]-type are defined by the
irreducible representation π .

We shall suppose that the n-dimensional Lie algebra L has a basis of the form given
in theorem 2. Thus, sl(2, K) is generated by {x, y, h} and the radical R of dimension d is
generated by {v0, v1, . . . , vm}, where m = d − 1. It is clear from equation (5.6) that the
determining equations are completely determined by the commutator table of L. In turn, this
table is completely determined by equation (4.1) and part (b) of theorem 2. However, to derive
the adjoint system (5.8), we also need the rank of the matrix of the commutator table, and
this is given by theorem 3. Once the adjoint system is obtained, it can be solved using one of
the methods available for solving systems of total differential equations, and Natani’s method
appears to be the most appropriate in this case.

Table 1 gives a list of invariants computed for L = S ⊕π R(m) where the dimension d of
the irreducible S-module R(m) of maximal weight m = d − 1 is up to 5, and where L has the
usual basis of the form {x, y, h, v0, v1, . . . , vm}. We give here an example of the procedure of
calculations when d = 3. The matrix ML of the commutator table has the form

ML =




0 h −2x 0 2v0 v1

−h 0 2y v1 2v2 0
2x −2y 0 2v0 0 −2v2

0 −v1 −2v0 0 0 0
−2v0 −2v2 0 0 0 0
−v1 0 2v2 0 0 0




. (5.9)
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The notation [xi, xj ] = ∑
k ck

ij xk used in equation (5.6) shows that the determining
equations can be read off the commutator table. For instance, if we denote by Fu the partial
derivative ∂F/∂u of a function F with respect to the variable u, the functions invariant under
the subgroup generated by h are given by the third row of (5.9) as

h̃ · F ≡ 2xFx + −2yFy + 2v0Fv0 − 2v2Fv2 = 0.

However, given the matrix ML of the commutator table, and knowing that it has rank 4,
we only need to solve the equation ML · X = 0, for four of the components in the vector

X = (
Fx, Fy, Fh, Fv0 , Fv1 , Fv2

)
in terms of the remaining two others. This determines the Jacobian system and the coefficients
Us,t , and hence the adjoint system. More precisely, solving for four of the variables in terms
of the two variables Fv1 and Fv2 determines the coefficients Us,t , with v1 and v2 as dependent
variables. These transformations yield after simplification the following system of two total
differential equations.

(hv0 + v1x) dv1 = −2v2v0 dx + 2v2
0 dy − v1v0 dh + 2(v2x + v0y) dv0

(hv0 + v1x) dv2 = −v1v2 dx + v0v1 dy − v2
1

2
dh + (v1y − hv2) dv0.

Solving this system gives the invariants

I1 = hv1 + 2v2x − 2v0y

I2 = v2
1 − h2v2

1 − 4v0v2 − 4hv1v2x − 4v2
2x

2 + 4hv0v1y + 8v0v2xy − 4v2
0y

2.

After simplification, these invariants that we call again I1 and I2 are given by

I1 = hv1 + 2v2x − 2v0y I2 = v2
1 − 4v0v2.

The computation of the invariants becomes more and more impractical when the dimension
of the radical is greater than 5. This is partly due to the complications that arise when solving
the adjoint system, owing to the fast growing number of terms and variables that appear in the
invariants.

6. Properties of the invariants

We notice that all the invariants of L computed for dimR(m) = 1, . . . , 5 and given in table 1
are all polynomials as stipulated by lemma 1. Moreover, in all cases there is a fundamental
system of invariants consisting of homogeneous polynomials. On the other hand, for d � 4,

we realize that the invariants F depend only on the elements of the irreducible S-module R(m).
That is, they are of the form F = F(v0, v1 . . . , vm). The following result generalizes this
observation.

Theorem 5. Let L = S ⊕π R, where π is an irreducible representation of S = sl(2, K) in
the radical R, and suppose that dimR � 4.

(a) Every invariant of L has the form F = F(v0, . . . , vm). That is, F does not depend on the
variables x, y and h associated with sl(2, K).

(b) The invariants of L are all completely determined by the [S,R]-type commutation
relations alone.

Proof. Let Ṽ 0, Ṽ 1 and Ṽ 2 be the infinitesimal generators corresponding to the basis
elements v0, v1 and v2. By the determining equations (2.2), any invariant F must satisfy
the system of equations Ṽ 0 · F = Ṽ 1 · F = Ṽ 2 · F = 0. Since R is Abelian
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according to an earlier remark, this system corresponds to a linear equation of the form
A · Z = 0, where Z is the vector (Fx, Fy, Fh) and where A is the submatrix of the
commutator matrix ML located between positions (4, 1) and (6, 3). The determinant of
A is (−2 + 3m − m2)v3

1 + (−6m + 3m2)v0v1v2 − 3m2v2
0v3, which is clearly nonzero, and this

proves the first part of the theorem.
For part (b), we notice that because of the condition Fx = Fy = Fh= 0 just proven in the

first part above, and the fact that R is Abelian, the infinitesimal generators corresponding to the
basis elements of R all reduce to zero. On the other hand, by equation (2.1) the infinitesimal
generator Ẽi corresponding to a basis element Ei ∈ {x, y, h} reduces to

Ẽi =
m∑

j=0

[ei, vj ]
∂

∂vj

where ei is the corresponding coordinate for Ei . This proves the assertion and completes the
proof of the theorem. �

Invariant functions that depend only on the elements of a particular subalgebra occur
frequently in the study of Lie algebras. Theorem 5 represents only a particular case of a
more general framework in which such functions usually occur. Suppose that the finite-
dimensional Lie algebra M = L1

.
+ L2 is a vector space direct sum of the subspace L1

and the Abelian subalgebra L2. Let {X1, . . . , Xt } be a basis of L2 and extend it to a basis
{X1, . . . , Xt ,Xt+1, . . . , Xs} of M. Denote by B the matrix ([xi, xj ]) i = 1, . . . , t

j = t + 1, . . . , s

, in which

x1, . . . , xs is a coordinate system in the given basis of M. We have the following generalization
of theorem 5.

Theorem 6. Suppose that dim L2 � dim L1 and that the matrix B is of maximal rank.

(a) Every invariant of M is of the form F = F(x1, . . . , xt ). That is, F depends only on the
elements of the Abelian subalgebra L2.

(b) All invariants of M are completely determined by the [L1, L2]-type commutation relations
alone.

Proof. Let X̃i be the infinitesimal generator of the coadjoint action corresponding to Xi . For
every invariant F, equation (2.2) implies in particular that X̃i · F = 0 (for i = 1, . . . , t).
The corresponding system of PDEs can be written as a system of linear equations of the form
B · Z = 0, where Z is the vector

(
Fxt+1 , . . . , Fxs

)
. The condition dim L2 � dim L1 means that

s − t � t and this ensures that when B has maximal rank, it contains an invertible submatrix
so that the linear system B · Z = 0 implies Z = 0. The rest of the proof is similar to that
given for theorem 5. �

Example 1. Take M = L1
.
+ L2 to be a solvable and non-nilpotent Lie algebra having an

Abelian nilradical L2. By a result of [22, 23], we have dim L2 � dim M/2. Furthermore,
we showed in [23] that the corresponding matrix B has maximal rank. It follows that M

always satisfies the hypothesis of the theorem and thus the invariants of M depend only
on the elements of the nilradical, and they are completely determined by the [L1, L2]-type
commutation relations alone. (This is theorem 3 and corollary 1 of [23].) The invariants
of solvable non-nilpotent Lie algebras of dimension 6 over R having Abelian nilradicals are
computed in [4]. None of them has a fundamental set consisting of polynomials. Moreover,
they usually involve logarithms and functions in arctan.
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Remark. Theorem 6 greatly simplifies the determination of the invariants, by reducing at
least by half the number of equations in the system of determining equations given by (2.2),
and by reducing by dim L1 the number of independent variables in these equations.

We showed that a semi-direct sum of Lie algebras is perfect when the representation
associated with it does not possess a copy of the trivial representation. In such a case, semi-
direct sums of Lie algebras always have a fundamental set consisting of polynomial invariants.
We now make use of table 1 to show that despite these facts, and contrary to the case of
semisimple Lie algebras, the number of their invariants is not the same as the dimension of
the Cartan subalgebra. Indeed, when dimR = 2, the Lie algebra L = sl(2, K) ⊕π R(2) has
only one invariant. However, it is easy to see that L is split over the field K of characteristic
zero, and has Cartan subalgebra Kh ⊕ R(2), which has dimension 3.

7. Conclusion

In this paper, we considered a semi-direct sum of Lie algebras of the form L = S ⊕π R, where
π is a representation of the semisimple Lie algebra S in the radical R that defines the [S,R]-
type commutation relations. We showed that L is perfect when π does not possess a copy of the
trivial representation and that this condition is equivalent to the requirement that π(S)R = R.
In this case, L has a fundamental set of invariants consisting of polynomials (lemma 1). In
particular, L has this property when π is irreducible (theorem 1). The number of invariants
is given in theorem 4, when S = sl(2, K). Using a method of total differential equations, we
were able to determine the invariants when the dimension of the radical is up to 5 (table 1),
and to derive a theorem on certain properties of these invariants (theorem 5), as well as a
generalization of this theorem (theorem 6). Finally, we showed that, although the Lie algebras
we considered have a fundamental set of invariants consisting of polynomials, the cardinality
of this set is generally not equal to the dimension of the Cartan subalgebra, as it is in the
well-known case of semisimple Lie algebras.
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254 1712

[18] Campoamor-Stursberg R 2002 Invariants of solvable rigid Lie algebras up to dimension 8 J. Phys. A: Math.
Gen. 35 6293

[19] Sagle A A and Walde R E 1973 Introduction to Lie Groups and Lie Algebras (New York: Academic)
[20] Gantmacher F R 1960 Matrix Theory (New York: Chelsea)
[21] Goursat E 1917 Mathematical Analysis: Part II (Boston: Ginn)
[22] Mubarakzyanov G M 1966 Some Problems about solvable Lie algebras Izv. Vyssh. Uchebn. Zaved. Mat. 6 95
[23] Ndogmo J C 2000 Properties of the invariants of solvable Lie algebras Can. Math. Bull. 43 459


